Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845–1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845–1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared tomodern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Blair, Jaime E (Ed.)We examined the evolutionary history ofPhytophthora infestansand its close relatives in the 1c clade. We used whole genome sequence data from 69 isolates ofPhytophthoraspecies in the 1c clade and conducted a range of genomic analyses including nucleotide diversity evaluation, maximum likelihood trees, network assessment, time to most recent common ancestor and migration analysis. We consistently identified distinct and later divergence of the two MexicanPhytophthoraspecies,P.mirabilisandP.ipomoeae, fromP.infestansand other 1c clade species.Phytophthora infestansexhibited more recent divergence from other 1c clade species ofPhytophthorafrom South America,P.andinaandP.betacei. Speciation in the 1c clade and evolution ofP.infestansoccurred in the Andes.P.andina–P.betacei–P.infestansformed a species complex with indistinct species boundaries, hybridizations between the species, and short times to common ancestry. Furthermore, the distinction between modern Mexican and South AmericanP.infestansproved less discrete, suggesting gene flow between populations over time. Admixture analysis indicated a complex relationship among these populations, hinting at potential gene flow across these regions. HistoricP.infestans, collected from 1845–1889, were the first to diverge from all otherP.infestanspopulations. Modern South American populations diverged next followed by Mexican populations which showed later ancestry. Both populations were derived from historicP.infestans. Based on the time of divergence ofP.infestansfrom its closest relatives,P.andinaandP.betaceiin the Andean region, we consider the Andes to be the center of origin ofP.infestans, with modern globalization contributing to admixture betweenP.infestanspopulations today from Mexico, the Andes and Europe.more » « lessFree, publicly-accessible full text available January 24, 2026
-
NA (Ed.)Abstract In 1843, a hitherto unknown plant pathogen entered the US and spread to potato fields in the northeast. By 1845, the pathogen had reached Ireland leading to devastating famine. Questions arose immediately about the source of the outbreaks and how the disease should be managed. The pathogen, now known asPhytophthora infestans, still continues to threaten food security globally. A wealth of untapped knowledge exists in both archival and modern documents, but is not readily available because the details are hidden in descriptive text. In this work, we (1) used text analytics of unstructured historical reports (1843–1845) to map US late blight outbreaks; (2) characterized theories on the source of the pathogen and remedies for control; and (3) created modern late blight intensity maps using Twitter feeds. The disease spread from 5 to 17 states and provinces in the US and Canada between 1843 and 1845. Crop losses, Andean sources of the pathogen, possible causes and potential treatments were discussed. Modern disease discussion on Twitter included near-global coverage and local disease observations. Topic modeling revealed general disease information, published research, and outbreak locations. The tools described will help researchers explore and map unstructured text to track and visualize pandemics.more » « lessFree, publicly-accessible full text available December 1, 2025
-
NA (Ed.)Rapid detection of plant diseases before they escalate can improve disease control. Our team has developed rapid nucleic acid extraction methods with microneedles (MN) and combined these with LAMP assays for pathogen detection in the field. In this work, we developed LAMP assays for early blight (Alternaria linariae, A. alternata, and A. solani) and bacterial spot of tomato (Xanthomonas perforans) and validated these LAMP assays and two previously developed LAMP assays for tomato spotted wilt virus and late blight. Tomato plants were inoculated and disease severity was measured. Extractions were performed using MN and LAMP assays were run in tubes (with hydroxynaphthol blue) on a heat block or on a newly designed microfluidic slide chip on a heat block or a slide heater. Fluorescence on the microfluidic chip slides was visualized using EvaGreen and photographed on a smartphone. Plants inoculated with X. perforans or tomato spotted wilt virus tested positive prior to visible disease symptoms, while P. infestans and A. linariae were detected at the time of visual disease symptoms. LAMP assays were more sensitive than PCR and the limit of detection was 1 pg of DNA for both A. linariae and X. perforans. The LAMP assay designed for early blight detected all three species of Alternaria that infect tomato and is thus an Alternaria spp. assay. This study demonstrates the utility of rapid MN extraction followed by LAMP on a microfluidic chip for rapid diagnosis of four important tomato pathogens.more » « less
-
Blair, Jaime E. (Ed.)Phytophthora species cause severe diseases on food, forest, and ornamental crops. Since the genus was described in 1876, it has expanded to comprise over 190 formally described species. There is a need for an open access phylogenetic tool that centralizes diverse streams of sequence data and metadata to facilitate research and identification of Phytophthora species. We used the Tree-Based Alignment Selector Toolkit (T-BAS) to develop a phylogeny of 192 formally described species and 33 informal taxa in the genus Phytophthora using sequences of eight nuclear genes. The phylogenetic tree was inferred using the RAxML maximum likelihood program. A search engine was also developed to identify microsatellite genotypes of P . infestans based on genetic distance to known lineages. The T-BAS tool provides a visualization framework allowing users to place unknown isolates on a curated phylogeny of all Phytophthora species. Critically, the tree can be updated in real-time as new species are described. The tool contains metadata including clade, host species, substrate, sexual characteristics, distribution, and reference literature, which can be visualized on the tree and downloaded for other uses. This phylogenetic resource will allow data sharing among research groups and the database will enable the global Phytophthora community to upload sequences and determine the phylogenetic placement of an isolate within the larger phylogeny and to download sequence data and metadata. The database will be curated by a community of Phytophthora researchers and housed on the T-BAS web portal in the Center for Integrated Fungal Research at NC State. The T-BAS web tool can be leveraged to create similar metadata enhanced phylogenies for other Oomycete, bacterial or fungal pathogens.more » « less
-
Samples from potato fields with late blight-like symptoms were collected from eastern North Carolina in 2017 and the causal agent was identified as Phytophthora nicotianae. We have identified P. nicotianae in potato and tomato from North Carolina, Virginia, Maryland, Pennsylvania, and New York. Ninety-two field samples were collected from 46 fields and characterized for mefenoxam sensitivity, mating type, and SSR genotype using microsatellites. Thirty two percent of isolates were the A1 mating type, while 53% were A2 mating type. In six cases, both A1 and A2 mating type were detected in the same field in the same year. All isolates tested were sensitive to mefenoxam. Two genetic groups were discerned based on STRUCTURE analysis: one included samples from North Carolina and Maryland, and one included samples from all five states. The data suggest two different sources of inoculum from the field sites sampled. Multiple haplotypes within a field and the detection of both mating types in close proximity suggests that P. nicotianae may be reproducing sexually in North Carolina. There was a decrease in the average number of days with weather suitable for late blight, from 2012-2016 to 2017-2021 in all of the NC counties where P. nicotianae was reported. Phytophthora nicotianae is more thermotolerant than P. infestans and grows at higher temperatures (25-35°C) than P. infestans (18-22°C). Late blight outbreaks have decreased in recent years and first reports of disease are later, suggesting that the thermotolerant P. nicotianae may cause more disease as temperatures rise due to climate change.more » « less
An official website of the United States government
